10 Очистка газов от диоксида серы с использованием твердых хемосорбентов

Недостатки абсорбционных методов очистки газов от диоксида серы привели к разработке процессов, основанных на использовании твердых хемосорбентов — путем их введения в пылевидной форме в топки и (или) газоходы теплоэнергетических агрегатов. В качестве хемосорбентов могут быть использованы известняк, доломит или известь. Для увеличения активности хемосорбентов, подавления процесса окисления SО2 в SОз и решения некоторых других задач наряду с поглотителем диок-сида серы вводят ряд специальных добавок в виде дешевых неорганических солей, оксихлорида меди, оксида магния и других веществ.

Наряду с перечисленными хемосорбентами в качестве агентов для связывания диоксида серы могут быть использованы и некоторые оксиды металлов. С позиций обеспечения приемлемых скоростей поглощения диоксида серы и регенерации насыщенных хемосорбентов наиболее перспективными среди них являются оксиды Al, Bi, Се, Со, Cr, Cu, Fe, Hf, Mn, Ni, Sn, Th, Ti, V, U, Zr. Среди исследованных и опробованных методов некоторую практическую реализацию получил окисно-марганцевый метод.

По этому методу горячие дымовые газы (≈135°С) обрабатывают оксидом марганца в виде порошка. В процессе контакта оксида марганца с диоксидом серы и кислородом происходит реакция
MnOх • nH2O+SO2+(l— х/2)О2 → MnSO4+nH2O,

где х-1,6—1,7.

Образующийся сульфат марганца после его выделения из газа обрабатывают в виде водной пульпы аммиаком с целью, регенерации оксида марганца:

МnSО4+2NН3+(n+1)Н2О+(x—1)/2О2 → MnOх • nH2O +(NH4)2SO4.

В соответствии с рисунком 27 инжектируемый в дымовые газы оксид марганца взаимодействует с содержащимся в них диоксидом серы в адсорбере. Выходящие из адсорбера газы освобождают от взвешенных примесей в циклоне и электрофильтре, после чего через дымовую трубу при ≈115°С очищенные газы поступают в атмосферу.

Рисунок 27 — Схема установки оксидно-марганцевой очистки дымовых газов от диоксида серы:
1 — адсорбер; 2 — циклон; 3 — электрофильтр; 4 — дымовая труба; 5 — аммонийный скруббер; 6 — реактор; 7 — сепаратор; 8 — фильтр; 9 — кипятильник; 10 — кристаллиза¬тор; 11-центрифуга; 12 — циклон

Основное количество хемосорбента из циклона и электрофильтра вновь направляют на контактирование с дымовыми газами, а небольшую его часть в виде водной пульпы с целью регенерации оксида марганца последовательно обрабатывают в аммонийном скруббере и реакторе водным раствором аммиака и воздухом. Уловленную в процессе газоочистки сажу, находящуюся в поступающей из реактора пульпе, отделяют в сепараторе. Регенерированный оксид марганца выделяют из раствора на фильтре и направляют в голову процесса. Освобожденный от взвешенных веществ раствор сульфата аммония через кипятильник передают на вакуум-кристаллизацию. Образующиеся кристаллы сульфата аммония отделяют от маточного раствора на центрифуге и после высушивания, горячим воздухом отделяют от последнего в циклоне. При содержании диоксида серы в подаваемом на очистку газе 0,15% (об.) окисно-марганцевый метод в соответствии с такой технологией обеспечивает его 90%-е извлечение.

Преимущества сухих методов очистки газов от SO2: возможность обработки газов при повышенных температурах без увлажнения очищаемых потоков, что позволяет снизить коррозию аппаратуры, упрощает технологию газоочистки и сокращает капитальные затраты на нее. Наряду с этим они обычно предусматривают возможность цикличного использования поглотителя и (или) утилизацию продуктов процесса очистки газов.

Недостатки:
— значительные затраты на регенерацию;
— необходимость выполнения реакционной аппаратуры из дорогостоящих материалов, так как процессы идут в условиях коррозионных и повышенных температурах.

К сухим способам относят также каталитическое окисление диоксида серы и поглощение диоксида серы адсорбентами.

Среди сухих способов адсорбционного улавливания диоксида серы в наибольшей степени исследованы и опробованы в производственных условиях (применительно к газам процессов сжигания твердого и жидкого топлива) углеродные поглотители (активные угли), позволяющие проводить обработку газов при 110–150 °С.

Для регенерации насыщенных поглотителей могут быть использованы термический и экстракционный способы. При термической регенерации необходимы: нагрев адсорбента газовым или твердым теплоносителем до 400 – 450 0С с целью разложения серной кислоты. Экстракционная регенерация сводится к. обработке насыщенного поглотителя подогретой водой, приводящей к получению разбавленных растворов серной кислоты (10–15%-й). Последние необходимо концентрировать упариванием.

Ввиду дефицитности и высокой стоимости адсорбентов могут быть рекомендованы лишь для обработки относительно небольших объемов отходящих газов в производствах серной кислоты и целлюлозы, на нефтеперерабатывающих предприятиях и др.

Сорбционная способность силикагелей по диоксиду серы составляет существенную величину даже при высоких температурах (150–200 °С) и низких концентрациях целевого компонента в газах [<1% (об.)], что объясняют происходящим окислением адсорбированного SO2 в SOS кислородом, содержащимся в обрабатываемых потоках. Регенерацию насыщенного поглотителя ввиду его негорючести можно проводить нагретым воздухом. Если в очищаемых газах содержатся пары воды, величина поглощения силикагелями диоксида серы резко уменьшается.

В качестве поглотителей диоксида серы из газов исследованы ионообменные смолы – аниониты; кислотостойкие цеолиты, в том числе природные.

Большинство сухих методов очистки газов от диоксида серы требует значительных затрат тепла на регенерацию. Их реализация связана также с повышенными капитальными затратами ввиду необходимости выполнения адсорбционной аппаратуры из дорогостоящих специальных материалов. Это препятствует внедрению адсорбционных процессов для очистки газов.